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:The present report investigates different numerical uethods of

solution to compute wave forces on submerged shell type structures of

arbitrary shape. Although we only dealt here with two dimensional

applications, future applications will involve three dimensional analysis.

Hence it is of primary importance that the technique under consideration

can be extended to three dimensional applications.

The report considers for comparison purpose the application of the

finite element method [I]1 but it is evident that the technique can not

be easily extended to general three dimensional problems. Thus we con-

centrate in the boundary element method [2.1 [31 whlich is newly developed

technique.

The finite element method has attracted the attention of the analysts

to largely due to its property of dividing the continuum into a series of
I elements, which can be associated with physical parts. The existing

literature or finite elements is by now very extensive and encompasses

structural [43 as well as fluid flow "LU and other types of problems. The 1

method can sometimes be based on variational principles or more generally

on weighted residual expressions. Integral equations techniques on the

other hand were until recently considered to be a differeit type of

analytical method, somewhat unrelated to other approximate techniques such

as finite elements. They become popular in Europe through the work of a

series of Russian authors such as Muskhelishvili [5], Mikhlin [61,

Kupradze [7j; Smirnov [8] but were not very popular with engineers. A

predecessor of some of this work was Kellog [91 who applied integral
equations for the solution of Laplace's type problems. Integral equations

techniques were mainly used in fluid mechanics and general potential

problems and known as the 'source' method, which is now called an 'indirect'

method, i.e. the unknowns are not the physical variables of the problem.

Work on this method continued throughout the sixties and seventies in

the pionerring work of Jaswon [Io], and Symm [''], lassonet [12], Hess [13]

and many others.I

It is difficult to point out precisely who was the first one to propose

the 'direct' method of analysis. It is found in a different form, in

I Kupradze's book LT]. It seems fair however from the engineering point of

' view to consider that the method originated with the work of Cruse and

I
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Rizzo [141 in elastostatics. The importance of the direct technique is

not only that it allows us to solve the problem in terms of physical

variables, but also that it was the first step towards a better under-

standing of the technique and its relationship to other approximate

methods, in particular mixed finite element models, such as those proposed

by Pain L15.

Since the early 1960's a small research group at Southampton University

started working on the application of integral equations to solve engineering

problems. Hadid's thesis published in 1964 [161 dealt with the applications

of integral equations in shell analysis. Unfortunately the presentation of

the problem, the difficulty of defining the appropriate Green's functions

and the parallel emergence of the finite element method all contributed to

minimize the importance of this work. It was not until 1973 that the group

produced another significant thesis, i.e. the one written by Watson [171
and dealing with three dimensional elastostatics problems. By then recent

developments in finite elements had started to find their way into the

formulation of boundary integral equations. The idea of using general

curved elements originated in another Southampton University thesis

presented by Lachat in 1975. This thesis whose topic was suggested

and supervised by C. Brebbia marked emergence of the boundary element

method. Still the question of how to effectively relate the boundary

integral equations to other approximate techniques was still unresolved.

This was done by Brebbia who published a series of papers on the relationship

of different approximate methods, eliminating in 1978 with the first book

[i for which the title Boundary Elements was used. More recently this work

has been expanded to encompass time dependent and non-linear problems and

this gave origin to a more advanced second boundary elements book L31.

Two important International Conferences were held at Southampton University

in 1978 and 198O. The edited proceedings of these conferences - so far

the only ones on the topic - are now standard references [18][19].

Although boundary elements is a very powerful technique it is convenient

in applications such as fluid-shell interaction problems to combine it

with finite elements. This combination should be achieved satisfying

fully compatibility and equilibrium at the interfaces between fluid and

solid, which requires using the same types of elements for both solutions.

The coupling miy be achieved in either of two ways; i) by considering
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the whole problem using an equivalent BEM approach; ii) by converting

the BEM regions into equivalent FEM. The two approaches are described

in detail in reference E0]. As the FEM is very well established, the

consideration of the BE subregion as an additional equivalent finite

element matrix seems most attractive. The formulation of this 'equivalent'

matrix used to model the BE presents however, certain problems; at

sharp geometric discontinuities, there are also discontinuities of surface

tractions which require special attention and the equivalent FE matrix

formed is not inherently symmetric, unlike the classical FE approach.

A technique which overcomes these problems and provides an acceptable FE

type formulation using the BEM method has recently been presented by

Georgiou and Brebbia. An early paper involving a crude way of symmetrizing

the matrices has been published by Zienkiewicz L22] et al, but this
work has been largely superceded by a recent paper by Mustoe et al F23],
who presented an interesting way of overcoming some of the difficulties

due to the non-symmetric way in which the integrations are carried out.

It involves weighting the standard integral equation relationships with

the actual shape functions used for the boundary variables. This in

effect means that instead of applying a point source to form each equation

a distributed source on either side of the node is applied and a numerical

integration process which seems the "influence" for a series of sources

as opposed to a single one has to be applied. Unfortunately this signific-

antly increases the number of integrations involved. The combination of

the solution for the fluid domain, expressed using BEM, the shell discretiza-

tion using FEM will be the topic of a future progress report.

The present report deals with the accurate computation of the forces

on the semimerged shells and concludes that it is necessary to properly

define the geometry of the obstruction. Otherwise an uneconomic number

of fluid boundary elements is required to obtain accurate solutions.

Higher order elements as the one advocated in this report are also necessary

to maintain compatibility of shell and fluid movements.

°".dome-
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2. Governing Equations

The following equations correspond to two dimensional, incompressible

and irrotational flow. The linear wave theory potential for constant

depth and without the obstruction can be written as (figure 1)

iga cosh 5c (y+h)] ixe -iWt

0 W coshich e e (I)

where the subscript 'o' refers to the incident field, x is the coordinate

in the direction of the wave, y the vertical coordinate measured from the

mean water level. g is gravity, a is the wave amplitude of the incidento

wave, w and K the wave frequency and number respectively.

This wave potential can be diffezentiated in the direction of the

normal to the boundaries of the domain to give,

ga°K cosh[c(y+h)] sinh[K(y+h)] iKx

q(xy) = x [ cosh Kh - cosh Kh I

Qo (z,y,t) = q (x,y)e1-it (2)

where n and n are the direction cosines of the normal to the boundary
x y

with respect to x and y.

The potential of the scattered wave can now be written as,

0 s(X,y,t) = Os(xy)e-lwt (3)

The total potential is

P- + P (4)
V S

and have to satisfy the Laplace equation in the domain, i.e. (figure 2)

V2¢(x,y,t) - 0 in 0 (5)

with the following b-c
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i) Bottom condition,

0 on r2  (6)

ii) Free surface condition

a2.p ao
-- + g 0 on r4  (7)at2  W

iii) Obstruction condition

30

a 0 on r (8)

iv) Radiation - Summerfeld type - condition

lim S~ -~ 'O 0 onr (9)[lx -+  alj at j3

The 0 solution for the incident wave will satisfy these conditions,
0

hence the problem can be expressed in terms of the scattered field

carrying out the time derivatives. This gives the following system

V 20s(x,y) = 0 in Q (10)

with the following boundary conditions

i) Bottom condition,

ao 
s

an - 0 on P2  (II)

ii) Free surface condition

s 2
-n g 0s 0 on r4 (12)
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iii) Obstruction condition

at = 4" - q on r (13)

iv) Radiation condition (approximate)

S iK0 0 on 3  (14)

3. Weighted Residual Statement

The above system of equations can now be rewritten in a weighted

residual form, to minimize errors when using an approximate method of

solution such as finite or boundary elements. Let us consider an

arbitrary function ** and its derivativc q* = Later on wean

will associate these functions with the virtual increment type of

functions used in finite elements or with the fundamental solutions of

boundary elements. The resulting weighted residual statement can be

written

J ( 2o) *d2 q ( ~ dr + j dr
F I  r 2

ilco)*d +* j 00
r 3  4

Notice that the scattered potential field function is now written

without the subscript 's' for simplicity.

Integrating by parts once the terms on the left hand side of (15)

results in,

1~j
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d= - q 0*dr + i J + 2 *dr (16)

r r r3 r 4

This expression is the starting point for finite element solutions

of the wave diffraction problem.

If we integrate (16) once more one obtains,

- *V 20*dQ = - qo **dr + i KO **dr + -w2 *dr
r I  r 3  r

3 4

f * a.*(17)

f an
r

Notice that r is the total boundary i.e. r = rI + r2 + r3 + r4"

Expression (17) is the starting point for boundary element solutions.

We need to define ** as a fundamental solution such that the integral

in Q disappears and the problem becomes a boundary problem only.

4. Finite Element Formulation

Let us first consider the finite element discretization of equation

(16). This formulation will imply to define some type of interpolation

functions over an element (figure 3). The 0 function can now be written

as,

0 = N *" (18)

where N are the interpolation functions chosen and n the corresponding

nodal unknowns. The inverted form of (18) is

60 N (19)



Notice that * is a complex function, i.e.

= t + i* (20)

The resulting finite element matrices can now be deduced as

indicated in the literature [11 and the final system of equations for

the continuum as shown in figure 4 have the following form,

K (i K + - ) M } n Q (21)

which can now be solved.

5. Boundary Element Formulation

In the boundary element case the ** functions can be associated with

a full space Green's function such that,

1V2* + A. = 0 (22)

where A. is a Dirac delta function, whose integral is equal to one at the1

point 'i' and zero everywhere else.

The solution to (22) is

**=.lin (23)

Substituting (23) into equation (17) gives,

q. *dr +j iK O*dr + J Of*dr - dr (24)

r 13 r4  r

Formula (24) implies an iategral relationship between a point 'i'

inside the Q domain and the values on the r boundary of the domain. If

the point i is taken to be on the domain we have [2],

. ....e



ci *i=- qow*dr +  iKO + -*dr+Jdr dr (25)

r r3  r4  r

where c. for smooth boundaries and for a sharp corner its value is1

proportional to the interior angle - c. can also be deduced from consider-1

ation of constant field states, see reference [2jf3].

Equation (25) can be rearranged as follows,

c + 00 d + I'^ iKo*) 0 dr

r +r In3'n

+1 *o - 2  dr + *q dr = o (26)

r 3  rI

We can now propose a type of element to discretize the r surface of

the domain (see figure 5). The type of elements is of the utmost importance

in the analysis as we will see but for simplicity let us consider that

the elements are constant. The surface r can now be discretized into

.N elements each with a r. surface and such that (26) becomes,

c' +if 1 L-dr +r.030 - iKO* drj

N N 1 n N3 fat

J J

N4 r. r.
1 3

Note that the total number of elements is N + N2 + N3 + N 4 N and that

the 'j' subscript refers to the element number.

We can distinguish two types of integrals.
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--. 1 ( O€*) dr
ij = 3 f ij d

rj (28)

and gij = f (*)j dr

r. 3

These integrals represent influence functions between element i at

which the fundamental solution is applied and any other element 'j'

under consideration. Note that for the case of linear elements gii - 0,

as n and F are orthogonal. The value of the h.. coefficient is h..

h.. + c.. These coefficients can now be arranged in matrix form, each

row of the matrix corresponding to a new 'i' point. Equation (27) now
becomes,

2 3 3 g - 42-

(29)

Notice that H and G matrices are real but 4) and Q are complex.

n .n n

(30)
Q =R + iS
o01 -1 -1

Here we can write, 'P

It 0 H 0 H K G4 0 Y2 =-(GR,'p
1

0 HI  0 H2  -KG H H3  O G4  GSK2 -3 -3 g .4  4J tP{ I-}
'p3

Y4

N(3)



z-oLuLion of equation (31) will give the values of scattered potential

required Lo solve the problem.

6. Wave Forces

One can now compute the forces on the obstruction from Bernoulli's

equation. The dynamic pressure is

p(x,yt) - p Re f{cx~yt) }(32)
where = (D{N + ip)e - i wt Hence

p = - p Re {-iw((P+ ip)e -  } (33)

= p w((Osinwt - coswt)

p = pwR sin(wt - a)

With R = 2 + 02  tana =

The forces in the horizontal and vertical directions can now be

obtained integrating the pressures, i.e.

F= - p(-n)dF (35)
F

n is the vector normal to the obstruction; n = (sinO, -cosO) with

defined in figure 6.

P jp(sine, -cosO)dr pdy, -jpdx } (36)

ielce in di.,,cretized form.



12

F= p dy F= f p dx

I r1 (37)

NI NI
'7 p. Ayu  - I pj Ax.

j=1 j= 1 J

We could also find moments about a given part xoy o . This gives,

M = { -p [(x-x°)n - (y-y)nx ]jdr (38)
r l

7. Numerical Results

The forces on cylindrical obstructions of the type shown in figure I

were studied for two different depth to radius ratio, i.e. h/a = 3.0

ano h/a = 5.0 and for a range of wave numbers. Results obtained using

constant boundary elements were compared against linear finite elements

and the results published by Chakrabarti [24].

At first the boundary element results were obtained by fitting

th, elements trying to follow the curved surface of the cylinder. The

rchilts obtaineu in this way for a mesh of 16 elements and the cylinder

were very poor and are not shown in the figures. Further investigation

pointed out that the reason for this disagreement was the discontinuity

,' the incident q function between elements, specially for the elements

at the bottom. A fine mesh - of 200 elements - would be required to

(bviin accurate results using constant elements. This mesh density is

misiitable for three dimensional applications and points out the need of

using higher order elements which avoid discontinuities at element corners.

The importance of these discontinuities is demonstrated by the reasonable

IcCUracy of the BE solutions shown in figures 7 to 10. Thee solutions

were obtained by using constant elements in a step fashion, i.e. the

Uenients joining at 900 (or multiple of 900) angles. This grid, similar

to the one on the boundary of a finite difference grid gave accurate

results with a very coarse grid.
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he finite element results shown in figures 7 to 10 were obtained

to compare against boundary elements. It is easy to see that a much

larger number of degrees of freedom would be necessary when using finite

eLtnwets, specially for three dimensional problems.

Figures II to 14 compare linear boundary elements with Chakrabarti's

results. These elements follow the geometry of the half-cylinder and

reasonable agreement is obtained with 46 elements. It was then decided

Lo study the convergence of the results for vertical and horizontal forces

Figuires 13 and 16 show that the results converge when the number of

elements is increased. To improve the rate of convergence one needs to

ml toy quadratic or cubic elements.

Cor:, fusions

A.irse important conclusions were obtained from this work, namely

i) The advantage of using boundary elements by comparison with

finite elements in order to reduce the number of unknowns. For

three dimensional problems this reduction is in the order of 10

allowing for the solution of problems which otherwise would be

impossible to obtain.

ii) The need of using boundary elements which can follow the

geometry of the structure under consideration. In particular it is

advisable to use at least quadratic elements for curved surfaces

or even cubic elements which insure continuity of slopes. It is

important to remember that as in finite elements, the functions

for the potential should be at least of the same degree as those

used for the geometry. Otherwise appreciable errors can be intro-

duced in the formulation 1[3].

iii) Futuro work will involve the development of a cubic boundary

ulement to make the potential fully compatible with the type of

cubic functions used for shells.
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